miércoles, 23 de septiembre de 2020

Clase N 12 Matemáticas 2do 2da (enviada el 10 /9/20)

 

Definición de proporcionalidad directa

 Dos magnitudes son directamente proporcionales cuando, al multiplicar una de ellas por un número cualquiera, la otra queda multiplicada por el mismo número. Igualmente, dos magnitudes son directamente proporcionales si, al dividir una por cualquier número, entonces la otra queda dividida por el mismo número.

Se establece una relación de proporcionalidad directa entre dos magnitudes cuando:

-       A más cantidad de la primera magnitud, corresponde más cantidad en la segunda magnitud, en la misma proporción.

-       A menos cantidad en la primera magnitud, corresponde menos cantidad en la segunda magnitud, en la misma proporción.

Otra manera de determinar si dos magnitudes son directamente proporcionales es por medio de su cociente. El cociente entre dos magnitudes directamente proporcionales siempre es constante.

Ejemplos de problemas de proporcionalidad directa

1) El peso de un producto y su precio son dos magnitudes directamente proporcionales.

Observemos que si 1 kg de tomates cuesta  $50, entonces:

2 kg de tomates costará $ 100

0.5 kg de tomates costará  $ 25

Es decir, por más kilogramos de tomate se pagarán más $. Asimismo, por menos kilogramos de tomate se pagará menos  $.

 2) Otros ejemplos de magnitudes directamente proporcionales son:

- La distancia recorrida por un automóvil y el tiempo empleado en recorrer esa distancia —recorrer el doble de distancia implica emplear el doble de tiempo—.

La cantidad de caramelos y el precio a pagar por ellos —pagarás el doble de $ para comprar el doble de caramelos—.

EJEMPLO

Tomaremos como ejempo  de proporcionalidad  la cantidad de baldes de cal y de arena necesarios para preparar una mezcla.

Para 1 balde de cal se necesitan 3 baldes de arena y para 2 baldes de cal se necesitarán 6 baldes de arena.



Cada número de una proporción es un elemento. En toda proporción hay, por lo tanto, cuatro elementos. Dos, llamados extremos, y dos, llamados medios. En el ejemplo anterior, los números  1 y 6 son los extremos y los números 3 y 2 son los medios.



Otro ejemplo

Para hacer dulce,Juana pesa 3 kg de duraznos y les agrega 2 kg de azúcar. Para que el dulce salga igual de rico y espeso, cuando tiene 6 kg de duraznos,  debe agregar 4 kg de azúcar.



 

“En toda proporción, el producto de los extremos es igual al producto de los medios”.

 

Ejercitación:

1)    Completar la siguiente tabla

 



 

Ej2) teniendo en cuenta los ingredientes de una receta de bizcochuelo. Calcular “las proporciones” para hacer una torta con el doble de ingredientes y otra que sea 5 veces mayor:

Ingredientes para el bizcochuelo base:

6 huevos

1 taza de azúcar

1 taza de harina

1 cucharadita de polvo de hornear

 

 

No hay comentarios:

Publicar un comentario